Наиболее известный вид магниторазведочной аппаратуры – магнитометр. Его модифицированная разновидность – градиентометр. Принципы измерения магнитного поля в этих приборах одинаковы – они могут быть протонные, феррозондовые, квантовые и т.д, различны лишь конструктивные решения, которые позволяют решать несколько разные задачи.
Рис.1. Трёхмерное магнитное поле древнего города.
Рассмотрим наиболее широко применяющиеся виды магнитометров. В первую очередь это, конечно, протонные, феррозондовые и квантовые магнитометры. Все они обладают определёнными преимуществами и недостатками. Есть, конечно, ещё криогенные магнитометры, магнитометры на эффекте Холла, индукционные. Но пешеходные магнитометры, представляющие интерес для археологических изысканий, это, конечно, протонные, феррозондовые и в меньшей степени квантовые. Рассмотрим их сравнительных характеристики.
Казалось бы, основная характеристика магнитометра – чувствительность. Однако это не совсем так. Например, криогенные магнитометры легко достигают чувствительности 0,0001 нТл, но они настолько неудобны, громоздки и капризны, что их не применяют даже в аэроварианте (хотя попытки были).
Казалось бы, основная характеристика магнитометра – чувствительность. Однако это не совсем так. Например, криогенные магнитометры легко достигают чувствительности 0,0001 нТл, но они настолько неудобны, громоздки и капризны, что их не применяют даже в аэроварианте (хотя попытки были).
Квантовые магнитометры также вполне способны показать точность 0,01 нТл, но имеют весьма строгие ограничения по ориентации датчиков. Их уже много лет успешно используют при аэромагнитных съёмках.
Феррозондовые магнитометры, обладая весьма высокой точностью измерений и способностью выдавать не дискретные, как квантовый и протонный магнитометры, а непрерывнй сигнал, чувствительны к изменениям температуры, что доставляет конструкторам определённые хлопоты со «сползанием нуля» прибора.
Протонные магнитометры, будучи менее чувствительны, оказались очень неплохими в смысле стабильности, малой подверженности температурным изменениям и к ориентации по сторонам света (хотя последняя всё-таки присутствует). К недостаткам протонных следует отнести дискретность измерений, требующую остановки на каждой точке, громоздкость и большой вес датчиков, а также невозможность измерений в сильных полях.
Ещё о чувствительности. Если вы видите в паспорте прибора чувствительность 0,1 нТл, то это совершенно не значит, что вы сможете обнаружить аномалию величиной хотя бы 1 нТл! Во-первых, на эту 0,1 нТл накладывается температурный дрейф нуля прибора (несколько нТл). Во-вторых, влияние пространственной ориентации прибора – ещё 2-4 нТл. Ну, и, естественно, уже знакомые нам вариации геомагнитного поля.
Словом, как показывает многолетняя практика, выделить в процессе стандартной площадной пешеходной съёмки аномалию амплитудой менее 3-7 нТл невозможно. При маршрутной же съёмке (когда поисковик идёт по какому-то маршруту, часто по пересечённой местности), стараясь выделить аномалию по текущим показаниям прибора, аномалию даже в 10-20 нТл поймать весьма сложно. Так что при поиске можно спокойно переключать чувствительность на своём приборе с 0,1 на 1 нТл и приступать к работе, не утомляя себя разглядыванием десятых долей на дисплее.
Ещё важная характеристика магнитометра – способ регистрации. Если информация выводится только на табло в цифровом виде и (или) на магнитный носитель, то, конечно же, это прибор, предназначенный для площадных съёмочных работ. Эти работы достаточно сложны, требуют материальных и временных затрат, а результат, представляемый в виде карт магнитного поля участка, выдаётся только спустя определённое время.
Поисковый прибор должен иметь световую (изменяющаяся шкала) и звуковую индикацию. Это позволяет оперативно, по ходу полевых исследований, видеть аномалию, отыскивать её центр и сразу принимать решение на предмет её перспективности. Самый распространённый поисковый прибор – ручной металлодетектор, но его глубинность оставляет желать много лучшего, хотя другие характеристики (дискриминация, точность обнаружения цели и др.) доведены производителями до высокого уровня.
Требованиям более мощного глубинного поискового прибора отвечают магнитометры-градиентометры. Являясь, по сути, двумя магнитометрами, объединёнными в единый прибор, градиентометр даёт владельцу информацию не о численном значении поля в точке измерения, а о разнице поля между двумя точками пространства – о градиенте. Поскольку градиент поля Земли, геологических структур и временных вариаций исчезающее мал, градиентометр его игнорирует. А вот градиент от результатов человеческой деятельности, напротив, велик. Поле от небольших предметов человеческой деятельности невелико, но затухает настолько быстро, что это затухание (градиент) легко фиксируется градиентометром без предварительного построения карт магнитного поля. Уловит этот перепад и обычный магнитометр, но для этого оператору придётся на каждой точке производить не один, а два замера – внизу, на уровне земли, и выше на 1-2 метра, что, конечно же, неудобно. Но для правильного измерения поля магнитометром в необходимо останавливаться на каждой точке, и это уже неудобно вдвойне.
Комментариев нет:
Отправить комментарий